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OBLIQUE SHOCK W A V E S  IN D U S T Y  GAS S U S P E N S I O N S  

Y. Martsiano*, G. Ben-Dot* and O. Igra* 

(Received February, 17, 1988) 

The equations governing the flow field which is developed when a supersonic dusty-gas suspension passes through a straight 
oblique shock wave were formulated. A computer code for solving the governing equations was developed and used to obtain the 
solution for a variety of different initial conditions. In addition, the dependence of the post-shock suspension properties on the 
various physical properties of the dust particles, (namely the diameter of the dust particles, their specific heat capacity, their 
material density and the loading ratio of the dust in the suspension) was investigated. 
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NOMENCLATURE 
A Envelope area  of the solid part icle = zD 2 
C Specific heat  capaci ty  of the solid part icle 
Co Drag coefficient  
Cp Specific heat  capaci ty  at constant  pressure of the 

gaseous phase 
Cv Specific heat  capaci ty  at constant  volume of the gase- 

ous phase 
D Diameter  of the solid parit icle 
Fo Drag force 
k Thermal  conductivi ty 
M Flow Mach number  
rnp Mass  of a solid part icle 
N~ Nusselt  number 
n A co-ordinate normal  to the oblique shock wave  
n~ Number  density of the solid part icles 
P Suspension pressure 
P~ Prandtl  number 

QM.r :Ra te  of heat per unit volume t ransferred from the 
gaseous to the solid phase 

R : Specific gas constant  
Re : Reynolds number  
S : Cross section of the solid pa r t cu le=  nD2/4 
T : Tempera tu re  
u : Veloci ty of gaseous phase 
v : Veloci ty of the solid phase 
y : Secific heat  capat icies  r a t i o = C a / C v  
~b : Angle of incidence 

: Flow deflection angle 
/, : Dynamic viscosity 
p : Spatial  density 
a : Mater ia l  density 
r] : Loading rat io of the solid phase in the suspension 

= Ppo/Pgo 
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Subscripts 
g : Gaseous phase 
n : Normal  component  
p : Solid phase 
s : Tangent ia l  component  
x : Horizontal  co-ordinate 
y : Vert ical  co-ordinate 
o : Flow state ahead of the shock wave  
l : Flow state behind the shock wave  

1. INTRODUCTION 

The interest  in the gas-dynamic behaviour  of a gas-part icle 
suspension grew in the past three decades due to its applica- 
tion to many engineering problems. Some typical examples  
a re :  metal l ized propellents of rockets,  jet-type dust collec- 
tors and blast waves  in dusty atmospheres.  In addition, 
mixtures  with gases heavily laden with part icles  occur fre- 
quently in industrial processes such as plastics manufactur-  
ing, flour milling, coal-dust conveying, powder meta l lurgy 
and powdered-food processing. General descriptions of such 
flows can be found in several  books and review papers [Soo 
(1967), Marble(1970) and Rudinger(1973)]. 

The  major  differences between the flow fields which are 
developed behind a normal  shock wave  in a dusty-gas and a 
pure (dust-free) gas are il lustrated in Figs. l a  and b for the 
temperatures  and the velocities, respectively. When a steady 
pure gas encounters a normal  shock wave  it experiences  a 
sharp (almost discontinuous) change in its thermodynamic  
and kinematic  properties. This  sudden change is shown in 
Fig. 1 to occur between (0) and (1). The  thickness of this 
disturbance, lf, is only a few mean free paths of the gas  a toms 
or molecules (about 6.6x 10 ~cm in standard conditions). 
Beyond (1) the gas properties remain constant  (solid lines in 
Figs. l a  and b) provided the gas conditions at (1) are not 
sufficient to exci te  the internal degrees of f reedom of the gas. 

If, however,  the gas is laden with solid part icles then the 
suspension which was originally at a s tate of thermodynamic  
and kinematic  equilibrium, ahead of the shock front, is sud- 
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denly changed into a non-equilibrium state, because the solid 
particles, due to their  size compared with If do not experience 
any noticeable change in their propert ies upon moving from 
(0) to (1). Thus, at (1) the gas has a much higher temperature  
than the dust, Tg>>Tp and a much lower veloci ty u<<v. 
Morgentha ler  (1962) indicated that  this is true even if the 
part icle d iameter  is as small as 0.1 vm (for shock waves  in air 
at nearly standard conditions, where the mean free path is 
about 0.066/~m). Therefore ,  the part icles are not influenced by 
the initial disturbance, and the gas  properties at (1) can be 
safely assumed to be indentical to those of a pure gas with the 
same initial conditions. 

For  downs t ream of (1), i.e., at (co) in Fig. 1, the gas and the 
solid phases reach a new state of thermodynamic  and 
kinematic  equil ibrium via momentum and energy exchange.  
Theore t ica l ly  all shock waves  in dusty gases are infinitely 
thick, since equilibrium is approached asymptotically.  How- 
ever, it is a common pract ice to assign to the shock wave  an 
effective thickness which is defined by a requirement  that  the 
suspension propert ices come close to their  equilibrium down- 
s tream values. It was shown by Gottl ieb and Coskunses (1985) 
that the suspension equil ibrium properties (at infinity) can be 
calculated from the usual normal  shock wave  relations, 
provided that  the usual pure gas parameters  f and R (the 
specific heat  capac i t i es ' r a t io  and the specific gas constant) 
are replaced by effective values 7 and R which solely depend 
on the initial condit ions of the suspension. 

Between (1) and (oo) the solid part icles are not in equilib- 
r ium with the gas. The  flow region between (1) and co is 
known as the re laxat ion zone, for it is analogous to the 
re laxa t ion  zone in pure gases where the internal degrees of 
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freedom are excited. The  extent  of the re laxat ion zone 
strongly depends on the momentum and heat  t ransfer  mecha- 
nisms which enable the solid and the gaseous phases to reach 
a new equil ibrium state. The  analysis of the re laxat ion  zone 
was studied by many investigators.  The  pioneering works  of 
Carrier  (1958), Kriebel (1964) and Rudinger (1964) verified the 
existence of this re laxat ion zone and identified the parame- 
ters affect ing it, namely ;  the solid particle diameter ,  D, its 
specific heat  capacity,  C, its mater ial  density, a, and the 
loading ratio, 7/. lgra and Ben-Dor (1980) compared var ious 
correlat ions for the drag coefficient, Co, and the heat t ransfer  
coefficient, Nu. and pointed out their effect on the extent  of 
the re]axation zone. In addition they studied the role of 
thermal radiat ion heat transfer between the two phases and 
showed that it can be neglected when the incident shock 
waves  Mach number is smaller  than five. 

In all the above mentioned works,  as well as in many 
others, the gaseous phase was assumed to behave as a perfect 
gas. This  assumption was relaxed by Ben-Dot and lgra(1982) 
and lgra and Ben-Dot(1984) who solved the flow field while 
accounting for real gas effects. Dissociating nitrogen was the 
gaseous phase in the lat ter  work and ionizing argon in the 
former. 

The  assumption that the solid part icles are inert, which 
was also adopted in most of the published studies, was relax- 
ed by Elperin, Ben-Dor and lgra(1986) who solved the flow 
field of an oxygen-carbon suspension passing through a 
normal shock wave, behind which the temperature  of the 
carbon part icles reached their ignition temperature  and 
burned out. 

Tile assumption of uniform solid part icles was relaxed by 
Elata, Ben-Dor and Igra(1988) who solved the case of size- 
distributed solid particles. 

In all the above mentioned solutions the flow field was 
one-dimensional and steady. The  aim of the present study 
was to solve the case of a two-dimensional steady flow. This  
is the case when the shock wave  is oblique. There  are many 
incidences where the shock wave is oblique. For example,  one 
can mention the shock wave  generated by a supersonic 
vehicle, the shock wave  which is developed at the entrance 
nozzle of a rocket  engine and the reflected shock waves  
which arise when an explosion generated blast wave  interacts 
with man-made structures, in all these cases the shock wave  
is oblique and, hence, unlike the previously mentioned cases 
the resulted flow field behind the shock wave  is two- 
dimensional. 

The  aim of the present study, therefore, is to solve the flow 
field which is developed when a supersonic dusty gas suspen- 
sion passes through a straight oblique shock wave. 

Figure 2 illustrates schematical ly the problem to be solved. 
A dust gas suspension which is in a thermal and kinematic  
equilibrium encounters an oblique shock wave. The  angle of 
incidence is q5 (sometimes known as the wave  angle). As 
mentioned previously, upon the passage of the suspension 
through the shock wave, the properties of the gaseous phase 
assume a new state, known as the frozen state, immediately 
behind the shock front, while the solid phase passes through 
the shock wave  unaffected, due to the fact that the shock 
wave  is oblique, the streamline of the gaseous phase is 
deflected by an angle. &, while the t ra jectory of dust parti- 
cles of the two phases which were mentioned previously, here 
there is also a difference in the direction of propagat ion of the 
two phases. The two phases which are no longer in equilib- 
rium, start  exchanging momentum and energy until they 
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Fig. 2 A schematical illustration of an oblique shock wave in a 
dusty gas and the definition of the (x, y)-and (n, s) 
-planes. 

finally reach a new thermal  and kinematic  equilibrium. Here, 
kinematic  equil ibrium means that, in addition to equal veloc- 
ities, the two phases also reach the same direction. The  flow 
region inside which the two phases are in non-equilibrium, i. 
e., the re laxat ion zone, is also shown in Fig. 2. 

2. THEORETICAL BACKGROUND 

2.1 Assumptions 
The assumptions upon which the present model is based 

and their implication:~ are listed in the fol lowing:  
(1) The gaseous phase behaves as an ideal gas. Thus, the 

equation of state of the gas is P==p,RTg. Note that it is not 
assumed here that  the gas is calorical ly ideal. Alternat ively,  
the dependence of both Cp and C~ on the gas tempera ture  is 
accounted for. This  has not been done in previous studies 
where both Cp and Cv were  assumed to be constant. 

(2) All solid part icles are  rigid, inert small identical spheres 
uniformly distributed in the gaseous phases. Thus there is no 
heat addition or reduction due to chemical processes between 
the solid and the gaseous phases. Furthermore,  Re and Nu are 
based on the particle diameter,  D. 

(3) The  volume of the solid phase in the suspension can be 
neglected. Thus the momentum and energy exchange  among 
the solid part icles can be ignored. 

(4) Aside from momentmn and energy interactions between 
the gaseous and the solid phases, the gaseous phase is consid- 
ered to be a perfect flow, i.e., the dynamic viscosity, /zg, and 
the thermal conductivity, kg, are zero. This  also implies that 
neither kinematic  nor thermal boundary layers develop 
around the solid particles. 

(511 The dynamic viscosity,/~g, the thermal conductivity, kg, 

and the specific heat  capaci ty  at constant pressure, Cp, of the 
gaseous phase depend solely on its temperature,  Tg. 

(6) The  solid part icles are too large to exper ience any 
change in their thermodynamic  and dynamic propert ies upon 
their passage through the shock front. In addition they are 
also large enough not to exper ience Brownian motion. Thus, 
the part ial  pressure of the solid phases can be neglected. 

(7) The  solid part icles are small enough to satisfy the 
condition B, < 0.1, where B, is the Biot number, B, = h r / k p  (h 
is the coefficient of connection heat transfer,  r is the radius of 

the solid particle, and kp is its thermal conductivity). Thus the 
tempera ture  within the solid part icles can be assumed to be 
uniform. 

(8) The  weight  of the solid part icles and the buoyancy 
forces exper ienced by them are negligibly small in compari-  
son with the drag forces acting on them. 

(9) The  specific heat  capacity,  C. of the solid part icles is 
constant. 

(10) Ahead of the normal shock waw~ the suspension is at a 
state of thermodynamic  and kinemat ic  equilibrium, i.e., uo= 
vo and Tgo= T~o, where u and v are the velocit ies of the gas 
and the solid particles, and 7"R and Tp are the tempera tures  of 
the gaseous and solid phases, respectively.  

(ll) Based on the density ratio of the two phases 1/2500, the 
vir tual  mass  which depends on this rat io is neglected. 

In addition to the above listed assumptions it is assumed 
that the flow field under considerat ion is two-dimensional  
and steady. 

If the entire problem is analyzed in the (s, n)-plane, where 
the s-axis is parallel  to the shock wave  front and the n-axis 
is normal to the shock wave front, then the problem at hand 
can be considered as one-dimensional.  Note  that  the s- 
component  of the velocit ies of the two phases immediate ly  
behind the shock front are  identical, :i.e., u ~ =  v~. For  this 
reason the re la t ive  veloci ty between the two phases in the 
s-direction, is zero, and therefore there are no drag forces in 
the s-direction.  As a consequence, there are no changes in the 
velocity components  in the s-direction and they remain con- 
stant in the entire flow field. F rom symmetr ical  considera- 
tions, it is obvious that all the propert ies of the suspension 
must remain constant  along n := constant  lines, i.e., along lines 
which are parallel to the s-axis. Therefore ,  the partial  deriva- 
tive of any of the suspension propert ies with respect to s is 
zero. 

2.2 Governing Equations 
Based on the foregoing discussion and assumptions, the 

governing equations for the problem a~ hand are : 
-conservat ion of mass of the gaseous phase : 

~dZ (og u . ) = 0  (1) 

-conservat ion  of mass of the solid phase : 

S ( p p v . ) = 0  (2) 

-conserva t ion  of linear momentum of the gaseous phase : 

du~ ~ dP  
pgv. dn -- -d~  --- rD. (3) 

-conservaton of l inear momentum of the solid phase : 

du n 
~);v~ - - -dn  . . . .  b ' ~ ,  (4) 

-conse~wation of energy of the gaseous phase : 

d 1 2 
O~u. --dn ( C/Fg + ~ u . )  = Q .  r + F~.v .  (5) 

-conservat ion  of energy of the solid phase : 
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d 1 2 
ppv~ ~_~_ ( C T a + ~ v D  = -  Q . . r . -  F~v~ 

( l  Yl ~ 
(6) 

where pg and pp are the spatial densities of the gaseous and 
solid phases, u ,  and v, are the velocity components of the 
gaseous and solid phases in the n-direction, T~ and Ta are 
the temperatures of the gaseous and solid phases, P is the 
pressure of the suspension, Ca is the specific heat capacity at 
constant pressure of the gaseous phase, C is the specific heat 
capacity of the soild particles, QM.r is the amount of heat 
transferred per unit volume from the gaseous phase to the 
solid phase and Fo, is the drag force per unit volume applied 
by the gaseous phase on the solid particles. 

Thus, if Ca, C, Qn.T and FDn are expressed in terms of the 
dependent variables namely;  pg, pp, u,, v,, Tg, Tp and P, 
then the above set of six conservation equations contain 
seven unknowns. The seventh equation which is required to 
make the above set of equations solvable, is the equation of 
state of the gaseous phase ; i.e., 

where /zg, the dynamic viscosity of the gaseous phase, is 
calculated by the expression suggested by Mazor, Ben-Dor 
and lgra(1985) which reads 

[ T, \0.~ 
~ : ~ )  (12) 

where/~g~ is the dynamic viscosity of the gaseous phase at a 
reference temperature T~. 

The heat transferred per unit volume from the gaseous 
phase to the solid phase can be obtained by multiplying the 
heat transferred to a single particle by the number density of 
the solid particles, i.e., 

Qu r.= A h (  Ta - Tg) na (13) 

where A is the surface area of the solid spherical particle (i. 
e., A = 7rD z) and h the coefficient of heat convection can be 
calculated from 

P =psRTg (7) 

In the following, the above mentioned complementary equa- 
tions are developed. 

The drag force per unit volume can be obtained by multi- 
plying the drag force acting on a single solid particle by the 
number density of the solid particles. 

1 
F o ~ = ~ p ~ C , ( v n - u D ' l v ~  u~l 'Snp  (8) 

where Ca is the drag coefficient, S is the projected cross 
section of the solid spherical particle (i.e., S = zD2/4, where 
D is the diameter of the solid particles), and np the number 
density of the solid particles can be calculated from 

n a -  O, (9) 
mp 

where rnp is the mass of a single solid particle (i,e., mp= 
art Da/6,where a is the material density of the solid particles). 

The drag coefficient, Co, is usually expressed as a function 
of the Reynolds number, Re, which in turn depends on the slip 
velocity Ivn-  unl. For this reason, the Re number is very high 
immediately behind the shock wave while its magnitude 
vanishes towards the end of the relaxtion zone, where v~ 
un, is approached. For this reason two different correlations 
for the drag coefficient C~ are used : 
For Re < 800 

C o = ~ e  (1+0.15Re ~ (10a) 

and for 800 < Re < 3 • l0 s 

Co : - 2 ~ ( 1  +0.15Re ~ + 0.42 
1+42500 Re ~.16 

(10b) 

Both of these correlations were taken from Cliff, Grace ano 
Weber (1978). The Reynolds number is calculated from : 

o~ I v n -  u~ I D Re (11) /zg 

h = Nukg 
D (14) 

where ks is the thermal conductivity of the gaseous phase and 
N u  the Nusselt number is a function of the Reynolds number, 
Re, and the Prandtl number, Pr, which is defined as 

P r -  IZg Cp k~ (15) 

The correlation for N u  which was used in the present study 
is taken from Drake (1961). It reads: 

N u  = 2 + 0. 459Pr ~'aRe~ 

As mentioned in assumption (5) the specific heat capacity at 
constant pressure, Cp, and the thermal conductivity, kg, 
depend solely on the temperature of the gaseous phase, Tg. 
For this reason the gaseous phase was identified as air. For 
(Holman, 1981, p. 542) in the range 300< T~<2500K 

k~=0.0125+5.509• 10 STg 

and from VanWylen  and Sonntag (1978) p. 683 

(16) 

.... § 7(1 ) 

-820.4(T ) -s 

this condition is good for 300< Tg<3500K. 

2.3 Numerical  Solution 
Now we are at the stage where the governing equations are 

well defined, i.e., the number of independent variables is equal 
to the number of equations and all the non-dependent vari- 
ables can be expressed in terms of the dependent variables 
and other known parameters. 

As can be seen, the governing equations of the problem at 
hand consist of seven non-linear differential equations which 
must be solved simultaneously in order to obtain the spatial 
distribution of the flow properties. 

Numerous computer code packages, capable of numeri- 
cally solving non-linear differential equations, are available, 
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e.g., the IMSL (International Mathematical and Statistical 
Libraries). This package contains three different computer 
codes for solving a given set of differential equations pro- 
vided the initial conditions are known. (As will be shown 
subsequently, the initial conditions in the case at hand are 
indeed known.) The most accurate code out of these three 
codes is DREBS. It is based on the extrapolation method, and 
is superior when very high accuracy is required and when the 
calculation of the derivatives is not expensive. 

Fortunately, the relative simplicity of the governing equa- 
tions of the problem at hand, enables one to rewrite them in 
a form where the derivatives of the dependent variables are 
isolated, and hence can be calculated very quickly and cheap- 
ly (computer-wise). The rewritten set of the governing equa- 
tions can be changed to the following form : 

FD U 3 
dTg _ Qu.T.+ Fv~ u2_ RTg 

dn pgu[Cp R u 2 
u2-  RTg ] 

(17) 

du FD- p~R dT,  
_ dn 

dn u -  RT~ 
P~ U 

(18) 

dP = pgR( dTg Tg du ) 
dn dn u-  dn (19) 

d o g _  pg d u  
dn u dn 

(20) 

dT,  _ Q..~. 
dn cppv 

(21) 

d v  Fo 
dn ppV 

(22) 

dpp_ pp dv 
dn v dn 

(23) 

IN DUSTY GAS SUSPENSIONS 

o~=Ogo[ (r+l)M02 ] 

3 9  

(24) 

P ~ = P o [ ~ f ( 2 r  M0~- r +1)] (25) 

2 ( 7 - 1 )  M~ 

(26) 

Mo2+ 2 
Ml = )'-- 1 (27) 

2r M0~_l 

ul : M,J )'RT,, (28) 

where subscripts "0"and "1" denote the flow states immedi- 
ately ahead and behind the shock wave. M is the Mach 
number of the gaseous phase, i.e., M = u /a  [a, the local 
speed of sound, is simply calculated from a = ()'RT)~2]. 

Note that when Mo-q, i.e., when the shock wave degener- 
ates to a Mach wave, then there is no change in the properties 
of the gaseous phase as it passes through the shock wave. 

Since the model at hand assumes that the gaseous phase 
behaves as a perfect gas the upper value of M0 which can be 
used is limited, since as Mo-*Oo Tg-~c~. In the case of a 
diatomic gas, such as oxygen (02), nitrogen (N2), etc, Mo=6 
is usually taken as the upper limit for which the assumption 
of a perfect gas behaviour is valid. For monatomic gases such 
as helium (He), neon (Ne), argon (Ar), etc., the upper limit or 
Mo is even higher. Beyond these limiting values, real gas 
effects must be accounted for. The ways of treating such 
cases are discussed by Ben-Dor and Igra (1982) and lgra and 
Ben-Dot (1984). 

2.5 Complementary Equations 
Once the set of the governing equations is solved, the 

velocity vectors of each of the two phases can be calculated 
from : 

u =  u.  ~+ us~ (29a) 

2.4 The Initial Conditions 
As mentioned earlier, the problem at hand is such that the 

initial conditions, i.e., the values of the dependent variables at 
x=0[a t  state (1) in Fig. 1] can be easily calculated. 

Based on the fact that the thickness of the shock wave 
front is orders of magnitude smaller than the diameter of the 
solid particles, it is a common practice to assume that : 

(1) The gaseous phase experiences the well known "frozen" 
change upon its passage through the shock wave. 

(2) The solid phase remains unaffected as it passes through 
the shock wave. The above assumptions imply that while the 
properties of the solid phase immediately behind the shock 
wave front are identical to those ahead of it, the properties of 
the gaseous phase can be calculated using the well known 
Rankine-Hugoniot relations which relate the gas properties 
in both sides of the shock wave. More specifically ; 

v= v .~+ vs~ (29b) 

The absolute velocities of the two phases are therefore : 

I/~ I= ( u~§ u~) ~'~ (30a) 

I ~ l -  (v~§ v~).2 (305) 

The deflection of the gaseous phase streamline, 0g, from its 
original direction can be calculated from 

0g= r  u~ (31a) 
Hs 

Similarly, the deflection of the dusty phase streamline, 0p, is 
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O , = r  ~ v. (31b) 
Us 

Obviously, when the suspension reaches a new equilibrium 
state at the end of the re laxa t ion  zone the flow directions of 
the two phases become parallel  and hence ~ =  0p~ 

The  velocity components  of the gaseous and the dusty 
phases in the (x, y ) -coord ina te  system shown in Fig. 1 can be 
calculated from : 

Ux = u .  s i n e +  u~ cosr  (32a) 

Us = - u .  c o s r 2 4 7  u~ sine (32b) 

and similarly for the solid phase : 

v~-- v. s i n e +  v, cosr  
V s =  v.cos r  s ine 

(33a) 
(33b) 

2.6 N u m e r i c a l  Resul t s  
As mentioned earlier, the problem at hand can be t reated as 

one-dimensional by solving it in the (s, n)-plane. For  this 
reason, the flow profiles shown in lgra and Ben-Dor (1980), for 
example,  are all applicable for the case of oblique shock 
waves,  provided the flow Mach number Mo is replaced by M0 
s ine  and the x-axis  is replaced by the n-axis .  Note  that if the 
angle of incidence is set to r  then the oblique shock 
wave  becomes normal  to the oncoming flow, and the general 
case of an oblique shock wave  degenerates  to the well known 
one-dimensional normal shock wave  case. 

Since the change of the flow propert ies in a direction 
normal  to the oblique shock wave  front as well as the depen- 
dence of these properties on the physical propert ies of the 
dust particles can be deduced from lgra and Ben-Dor (1980), in 
the following only results which are unique to the fact that  
the shock wave  is oblique are presented'. 

2.7 The  Gas D e f l e c t i o n - 0 ,  
As mentioned earlier, the direct ion of the s t reamline of the 

gaseous phase changes continuously from its "frozen" direc- 
tion to its "equil ibrium" direction. In the following, the 
dependence of the flow deflect ion angle, 0g, on the physical 
propert ies of the dust is discussed. 

The  dependence of the flow deflection, 0g, on the dust 
loading ratio, 7], is i l lustrated in Fig. 3, for M0=3 and r  
30 ~ The dust physical parameters  are D = 100/zm, C -  1000J/ 
(Kgmk), a = 1500Kgm/m 3. 

As can be seen the frozen value of 0g, i.e., 0g at n = 0  is 
identical for all the cases. However ,  the larger  the loading 

rat io is, the grea ter  the equil ibrium flow deflection becomes. 
The  dashed lines are the values calculated by the equivalent  
gas concept presented in the introduction, which should be 
reached at the end of the re laxat ion  zone. 

It is also evident from Fig. 3 that  the larger  the loading 
rat io is, the shorter  the re laxat ion  length becomes. While for 
z/=0.1 it takes  about 8m for the gaseous phase to reach the 
equil ibrium deflection angle, only 3m are required when z}- 
2. 

The  deflect ion angle at the end of the re laxa t ion  zone, 0g,q, 
as a function of the dust loading ratio, z}, is shown in a 
different way in Fig. 4 for M o - 4 ,  r  ~ D=100/zm, C -  
1000J/(KgmK) and (7= 1500Kgm/m 3. 

The  fact that  the equil ibrium deflection angle increases 
with increasing loading rat ios is clearly seen in Fig. 4. 
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The change of the flow deflection angle O~ with normal 
distance from the shock wave for various loading ratios zl 
and M0=3, r  ~ D=100/zm, and C=1000J/(Kgm K). 
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The equilibrium flow deflection angle, Og,~, as a function 
of the loading ratio, z/, for Mo=4, r  ~ D 100/Lm, and 
C 1000J/(Kgm K). 

Fig. 4 

However ,  it is evident that  as r~ increases the rate of increase 
of the equilibrium deflection angle decreases and it seems 
that  there is an upper limit on 0g~q as zj assumes very high 
values. 

The  dependence of the deflection angle, 0,, on the d iameter  
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The change of the flow deflection angle with normal 
distance from the shock wave for various solid particle 
diameters, D, /140=3, C = 1000J/(Kgm K), @0=30 ~ and ~1- 
0.5. 

Fig.  7 

u~ 00 [ Kg/m3l 

.,~ 00 Kg/m 3 ] 

z " x  ~=2000[Kg/m31 

00 fKg/m 31 u.J 

u_ 

1 5  1 

0 5 I0 15 20 25 

NORMAL DISTANCE BEHIND THE: SHOCK WAVE[m] 

The change of the flow deflection angle with distance 
from the shock wave for various values of material  
density of the solid particles, a, and Mo = 3, r 30 ~ D =  
100,,m, C = 1000J/(Kgm K). and r,, - 0.5. 

of the  solid par t ic les  is shown in Fig. 5. Aga in  M 0 - 3  and r = 
30 ~ T h e  dust  p roper t i es  are  ~ = 0.5, C = 1000J/(Kgm K) and  6 
= 1500Kgrn/m ~. 

Since the loading ratio,  v, and  the specific hea t  capac i ty  of 
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NORMAL DISTANCE BEHIND THE SHOCK WAVE [ml 

The change of the flow deflection angle with normal 
distance from the shock wave for various values of spe- 
cific heat capacity of the solid particles, C, and M0=3, r 
== 30 ~ D = lOOpm, and 7j - 0.5, 

the  dust  part icles ,  C, are  the same for the  cases,  the equilib.  
r ium values  at  the  end of the  r e l a x a t i o n  zone are  identical .  
However ,  it is evident  f rom Fig. 5 t ha t  the  smal le r  the 
d i ame te r  of the solid par t ic le  is, the  shor t e r  the  r e l a x a t i o n  
length becomes.  

T h e  dependence  of the  def lec t ion  angle,  0g, on the specific 
heat  capac i ty  of the solid part icles ,  C, for M0=3 and  r =30  ~ 
is shown in Fig  6. T h e  proper t i es  of the solid phase  are  
- 0 . 5  D =  100/zm and  a =  1500Kgm/m 3. It is evident  f rom Fig. 
6 t ha t  h igher  values  of the specific hea t  capac i t i es  resul t  in 
larger  def lec t ions  at  the  end of the  r e l a x a t i o n  zone. The  
length  of the  r e l a x a t i o n  zone is not  seen to s t rongly  depend on 
the specific heat  capaci ty .  

T h e  dependence  of the def lect ion angle,  0g, on the  ma te r i a l  
densi ty  of the  soild par t ic les  for Mo = 3 and r = 300 is shown in 
Fig. 7. T h e  dust  p roper t i es  a re  ~7 =0.5, D =  100~m, C =  1000J/ 
(Kgm K). Again,  since ~ and C are  identical  for all the cases, 
the  equi l ibr ium values  approached  t o w ard s  the end of the 
r e l a x a t i o n  zone are  the  same for all the ca lcu la ted  cases. It is 
c lear ly seen f rom Fig. 7 t ha t  the smal le r  the  ma te r i a l  densi ty  
is, the  shor t e r  the  r e l axa t ion  zone becomes.  Whi le  it is about  
4m for a=-: 1000Kgm/m 3 it increases  to abou t  10m when  a is 
increased  to 2500Kgm/m 3. 

T h e  gas  and the  solid par t ic le  pa ths  is shown in Fig. 8 for 
Mc = 3, r = 60 ~ ~ = 1.0, D = 100am, C - 1000J/(Kgrn K) and  a - -  
1500Kgm/m 3. T h e  dif ference be tween  the  t r a jec to r ies  is 
c lear ly  evident .  Whi le  the gas  par t ic les  are def lected immedi- 
ately upon the i r  passage  th rough  the shock wave  ( n - 0 ) ,  the 
solid par t ic les  do not  change  the i r  or iginal  direction.  How- 
ever, behind  the  shock f ront  the  s t r eaml ines  of the two phases  
app roach  a paral le l  direction.  T h e  resul ts  shown in Fig. 8 
indica te  t ha t  it is impossible  to shape  a wedge in a supersonic  
flow of a dusty  gas, in such a way t ha t  it will gene ra t e  a 
s t ra igh t  oblique shock wave.  Th i s  is due to the fact  t ha t  a 
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Fig. 10 The (P, 0g)-shock polar for Mo=2.5, D=100#m, C = 
1000J/(Kgm K), a -  1000Kgm/m 3, and different values of 
the loading ratio 7. 

Fig. 8 

H O R I Z O N T A L  D I S T A N C E - X [ m  ] 

The gas and solid particles paths in the (x, y)-plane for 
Mo=3, r ~ D=500/zm, C=1000J/(KgmK), a =  
1000Kgm/m 3, and ~ = 1. 

s traight  oblique shock wave  in a dusty gas results in two 
different par t ic le  trajectories,  and no wedge can satisfy these 
two profiles. However ,  if the wedge surface is sticky, i.e., if it 
can be assumed that  when a solid part icle hits the surface, it 
st icks to it, then a wedge having a profile identical to that  of 
the gas part ic le  path might  genera te  a s t raight  oblique shock 

wave.  It should be noted, however,  that  ih the case of a st icky 
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wedge surface, solid part icles are drawn away from the 
suspension and hence their  loading ratio 7] could be affected. 

The  dependence of the equil ibrium deflection angle, 0g,q, on 
the flow Mach number, M0, is shown in Fig 9 for r = 60 ~ 7] = 
1, D - 2 0 0 p m ,  C - 1 0 0 0 J / ( K g m  K) and a = 1 5 0 0 K g m / m  3. It is 
evident from this figure that  the equilibrium deflection angle 
increases as the flow Mach number increases. However ,  as 
the flow Mach number reaches high values, the equilibrium 
deflection angle is seen to approach an upper limit. 

It is a common practice to use shock polars to study oblique 
shock waves.  Thus, in the following, shock polars in dusty 
gas suspension are presented. 

The  (P, 0g)-polar for the case M0=2.5, D=100#m,  C =  
1000J/(Kgm K), a = 1 5 0 0 K g m / m  3 and various values of V are 
shown in Fig 10. The  (P, 0g)-polar in this case represents the 
conditions at the end of the re laxat ion  zone, i.e., P = Peq and 
0g=0~ , .  As can be seen the equilibrium pressure, Peq, 
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FLOW M A C H  N U M B E R - M  o 

The dependence of the equilibrium flow deflection angle, 
0g,, on the incident flow Mach number, for r  ~ D = 
200t~m, C = 1000J/(Kgm K), a = 1000Kgm/m 3 and ~1 = 1. 
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Fig. I1 The (r 0g)-shock polar for M0=2.5, D=100/~m, C = 
1000J/(Kgm K), a = 1000Kgm/m 3, and different values of 
the loading ratio z]. 
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becomes higher when ~/ is increased. In addition, the maxi- 
mum deflection angle, known as the detachment angle, is also 
seen to increase with increasing ~. While for a dust-free 
(pure) gas (i.e., ~ =0) (Og~)~a~ is about 29 ~ it reaches a value 
of about 56 o when the loading ratio is ~ = 2. 

A typical (r 0,';-polar is shown in Fig. 11 for the same 
conditions of Fig. ]0. Here again ~g= 0 ~ .  It is evident from 
this figure that if a certain deflection is required, say 20% then 
as the loading ratio increases the angle of incidence, r which 
is needed to achieve the required deflection, decreases. 

3. CONCLUSIONS 

The flow field developed when a supersonic dusty gas 
suspension passes through a straight oblique shock wave has 
been investigated. 

The investigation included a formulation of the governing 
equations of the flow field at hand and a numerical investiga- 
tion of the dependence of the post shock suspension prop- 
erties on the variou~ physical properties of the solid particles. 
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